Moments of Elliptic Integrals and Critical L-values

نویسنده

  • I. J. ZUCKER
چکیده

We compute the critical L-values of some weight 3, 4, or 5 modular forms, by transforming them into integrals of the complete elliptic integral K. In doing so, we prove closed form formulas for some moments of K ′3. Many of our L-values can be expressed in terms of Gamma functions, and this also gives new lattice sum evaluations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Moments of the Critical Values of Families of Elliptic Curves, with Applications

Abstract. We make conjectures on the moments of the central values of the family of all elliptic curves and on the moments of the first derivative of the central values of a large family of positive rank curves. In both cases the order of magnitude is the same as that of the moments of the central values of an orthogonal family of L-functions. Notably, we predict that the critical values of all...

متن کامل

Moments of Ramanujan’s Generalized Elliptic Integrals and Extensions of Catalan’s Constant

We undertake a thorough investigation of the moments of Ramanujan’s alternative elliptic integrals and of related hypergeometric functions. Along the way we are able to give some surprising closed forms for Catalan-related constants and various new hypergeometric identities.

متن کامل

SOME RESULTS OF MOMENTS OF UNCERTAIN RANDOM VARIABLES

Chance theory is a mathematical methodology for dealing with indeterminatephenomena including uncertainty and randomness.Consequently, uncertain random variable is developed to describe the phenomena which involveuncertainty and randomness.Thus, uncertain random variable is a fundamental concept in chance theory.This paper provides some practical quantities to describe uncertain random variable...

متن کامل

Recursive computation of moments of 2D objects represented by elliptic Fourier descriptors

This paper develops a recursive method for computing moments of 2D objects described by elliptic Fourier descriptors (EFD). To this end, Green’s theorem is utilized to transform 2D surface integrals into 1D line integrals and EFD description is employed to derive recursions for moments computations. A complexity analysis is provided to demonstrate space and time efficiency of our proposed techn...

متن کامل

Renormalization of Certain Integrals Defining Triple Product L-functions

We obtain special values results for the triple product Lfunction attached to a Hilbert modular cuspidal eigenform over a totally real quadratic number field and an elliptic modular cuspidal eigenform, both of level one and even weight. Replacing the elliptic modular cusp form by a specified Eisenstein series, we renormalize the integral defining the triple product L-function in order to obtain...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013